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AN ANALYSIS OF MARKETS WITH A LARGE

NUMBER OF PARTICIPANTSY

by

Herbert Scarf

1. Introduction

The concept of a contract curve (or contract surface in the general

case) was introduced by Edgeworth in 1881 (7] to describe the possible

allocations of commodities in an economic situation in which the number

of participants is insufficient to warrant the assumption of competitive

prices. Since that time the idea of a contract surface has appeared in

economic literature, frequently accompanied by the statement that as the

number of participants becomes large the contract surface becomes smaller

and approaches the competitive allocation in the limit.?/ Edgeworth is

specific on this point in the analysis given in Mathematical Psychics,

which contains a geometrical proof of this result for the case involving

two commodities. Aside from the fact that the proof is described primarily

in geometrical terms so that there is at least a possibility that the

argument is not general, the step from two commodities to an arbitrary

nu-ber of commodities is a fairly large one, requiring arguments of a

different type than those presented by Edgeworth.

The only other examples that I am aware of, to formulate and demon-

strate this result, are to be found in a paper of Shubik [11] and in some

recent work of Shubik and Shapley which will be published shortly.

The problem discussed in this paper was formulated in a conversation

with Lloyd Shapley and Martin Shubik. I have also benefited greatly
from subsequent talks with Kenneth J. Arrow, Gerard Debreu, Abba Lerner
and Marc Nerlove.

2/ See [12], p. 81 for a typical statement of this "proposition."



In this present work the analysis of markets is carried out using the

techniques and the point of view of n-person game theory. Markets are

examined as n-person games with the specific assumption of transferable

utility and making use of several of the available concepts of solution

of an n-person game.!/ One of these concepts, the "core," (due to Gillies)

corresponds very closely to what Edgeworth and subsequent economists

mean by the contract surface. In fact, as was pointed out to me by

Shapley and Shubik, once the notion of transferable utility is dropped,

the core corresponds precisely to what is meant by the contract surface.
2/

In order to see this correspondence more clearly, let us introduce

the formal notation and definitions which will be the basis of the

subsequent discussion. We consider a market composed of N individuals

(1, 2, ... , N), each with a specific set of preferences for commodity

bundles consisting of m commodities. We shall denote the typical

commodity bundle by the vector x = (xl, ... , Xm) with the xi being

non-negative numbers; the preference ordering of the ith  consumer

will be denoted by the customary symbol > . The interpretation of
th

x > y is, of course, that the i consumer either prefers x to y
T

or is indifferent to the choice. If x > y and y > x then the commod-
T T

ity bundles x and y are indifferent. A number of assumptions that

Reference should also be made to several papers of Shapley [8,9) in
which finite market games are analyzed.

21/
Z' Most work in n-person game theory has been formulated in terms of

transferable utility, which is unfortunately a concept quite foreign
to current economic thinking. Some recent work, however, has been
done on a version of n-person game theory which involves no side
payments in utilities [3, 4, 10].
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are quite familiar will be placed on the various preference orderings.

(For a more complete discussion the reader may wish to consult [6].)

1. The preference ordering for each consumer is reflexive,

transitive, and complete; i.e., x > x and if x > y and y > z, then
T T T

x > z. and for any two commodity bundles x and y, either x > y

or y >x.
T
2. The ordering is continuous, i.e., for any y the set of

commodity bundles preferred or indifferent to y is a closed set, and

similarly for the set of commodity bundles which are indifferent to y

or not preferred to y.

3. The preferences are convex, in the sense that for any fixed y,

the commodity bundles preferred or indifferent to y, form a convex set.

4. The preferences are monotone. If all of the components of the

commodity bundle y are greater than or equal to the corresponding

components of x, then y > x. We shall also assume that if all of the
r

components of x are positive, then x > (0, ... , 0). Also let y be
i

any commodity bundle which is strictly preferred to (0, ... , 0). We

shall assume that for any a > 1, ay > y.
i

In our analysis we shall focus our attention on the exchange aspects

of the economy, that is to say no production will be considered. The

analogue of our main result is correct when production is also included.

The economic meaning, however, of coalition formation in the case in

which production is included seems to me to be considerably more subtle

than in the case of pure trade, and I would like to defer the discussion

of this case for a subsequent paper.

In the present discussion consumers will be equipped only with

specific initial holdings which they are interested in exchanging for

3



commodity bundles of higher utility. Tae initial holdings of individual

i will be denoted by the vector I = (I',. I., . It will be

convenient to assume that every consumer holds a positive quantity of

each item. Occasionally we shall find it useful to refer to the total

initial holdings of all of the consumers in a particular set of consumers,

and for this we shall use the notation I(S) to indicate the vector

obtained by summing the vectors Ii  over all members of the set of

consumers S. The entire set of consumers will be denoted by X, so

that I(X) refers to the total supply available in the market.

We are now in a position to describe what is meant by the core or

equivalently, the contract surface. In an informal way, the core may

be described as the collection of all allocations of the total market

supply which cannot be improved upon by any subgroup of the consumers

on the basis of their own initial holdings. Let us be somewhat more

formal a)out this definition. We consider allocations of the total

market supply to the various consumers:

1~ 2 XX + x + ... +x = I(X)

i t

with the commodity bundle x designated for the it h  consumer. Let

S be any subset of the total collection of consumers (on the one extreme

S may consist of a single consumer, and on the other extreme S may be

taken as the entire set of consumers.) We shall say that the allocation

, ... , xN is blocked by the set S if there is some way of allocating

the total holdings I(S) into commodity bundles yJ, with

I(s) y , and y >xi
J S J

for all j in S

4



The set of those allocations which are not blocked by any subset S will

be defined to be the core of the market, or the contract surface.

One immediate consequence of t1v definition is that every allocation

in the core is a Pareto optimum allocation. (This is a slightly weaker

definition of Pareto optimality than the one customarily given in which

strict preference is required for only one individual.) We see this by

taking the blocking set S to be the entire set of consumers. On the

other hand there will be many allocations which are Pareto optimum and

not in the core. An allocation may very well be Pareto optimum and yet

assign to an individual consumer a commodity bundle which is worth less

to him than his initial holdings. In this event the coalition consisting

of this consumer himself would be sufficient to block the allocation.

Even more generally, allocations which are Pareto optimum and assign to

each consumer a commodity bundle preferred to his initial holding, may

still be blocked by a coalition of several consumers.

If the number of participants in the market is large, there will be

many coalitions which may possibly be available to block a given allocation.

In some sense, the number of allocations in the core should therefore be

relr ively small. As we shall see in section 3, however, the dependence

of the size of the core on the number of participants in the market is by

no means simple to analyze.

There are always some allocations in the core - the competitive

allocations. Suppose that at prices vI 1 , .. ', xi is a commodity

bundle which maximizes the preferences of the jth consumer subject to the

budget constraint (A,y) < (9,IJ). Suppose in addition that rFxJ = I(X),

the sum taken over all consumers in the market. (It may be seen, by

5



adding the budget constraints, that in this case (r,xj) = (iY,Ij ) .) Such

a competitive allocation can never be blocked by a coalition S, as the

following argument, communicated to me by Shapley, will demonstrate.

Suppose that it were possible to find yJ such that

Z = I(S) and yJ > xi,
Jes J

for all j in S.

But then we must have (9,yJ) > (n,IJ), for otherwise xj would not

maximize preference subject to the budget constraint. Therefore

(nI(S)) = E (nYJ) > E (V,xJ)= (A,T(S))

JES JES

which contradicts the assumption that the competitive allocation is

blocked.

We know that under exceptionally general conditions (61 at least

one competitive allocation will always exist. Since we have reason to

suspect that for a large number of participants the core will be fairly

small, it seems at least reasonable that the result of Edgeworth will be

correct in the general situation discussed at present. As we shall

demonstrate, in the remainder of this paper, the result is indeed correct.

As the number of participants in the market tends to infinity (the precise

meaning of this rather elusive notion will be clarified in section 3.),

the core will, in the limit, consist only of competitive allocations. A

specific statement of this result is glven in Theorem 4.

One of the ways of interpretitg this r'sult is that it describes a

type of stability for the competitive equilibrium. If there are

6



sufficiently many participants in the market, then any deviation from

the competitive equilibrium will result in scme group of consumers re-

fusing to trade. This approach to the stability problem is, of course,

quite different from that described by Arrow and Hurwicz [2) and sub-

sequent writers.

2. A Characterization of the Core.

In this section we shall consider the general market with a finite

nunber of participants. As we have mentioned before, any competitive

allocation will be in the core, so that in general the core will not be

empty. The core will almost always contain some allocations which are

not competitive. The problem, to which we shall turn our attention, is

to characterize those allocations which are actually in the core.

i N
Let x, ... , x be an allocation of the total market supply

N
E xj = I(x) ,
J=l

with xi the commodity bundle assigned to the j th consumer and strictly

preferred by the jth consumer to the zero commodity bundle. In order

to decide whether this allocation is in the core we shall construct a

function g(S,z) in terms of which the answer will be given. This

function will be based on the specific allocation in question; for a

different allocation the corresponding function would be defined in a

similar fashion, but would assume different values. A more precise but

more cumbersome notation would perhaps indicate the specific dependence
1 N

of the function g(S,z) upon the allocation x , ... , x

7



The ;.rguments of g are as follows: S will range over all possi-

ble subsets of consumers, including the set of all consumers in the

market. The second argument z will range over all conmodity bundles,

that is all m-vectors with non-negative components. For a specific

commodity bundle z and a subset of consumers S, we consider all

possible allocations of z among the consumers in S, i.e., z = yJ.
JcS

For any such allocation we consider the possible non-negative values of

Sj
X such that X: > x . for all JeS. The largest possible value of k,X S

considering all allocations of z, is defined to be g(S,z). More

formally

g(Sz) = max > xiwith ySE = .

or zero if no X > 0 will do. The fact that we have a maximum rather

than a supremum, follows from the continuity assumption.
1 N

The relevance of this function to the question of whether x , ... , x

is in the core should be clear from the following theorem.

I N

Theorem 1. (x , ...,x ) with Ex = 1(X) is in the core, if
1

and only if g(S,I(S)) < 1 for all sets of consumers.
1 N

If x , ... , x does constitute an allocation in the core, then

clearly g(S,I(S)) < 1 for all S. If this were not correct, then

there would exist a X > 1 and an allocation of I(S); say yJ with

Z yJ = I(S), such that j > xi for all j in S. Now yj>(O ... , O)

JES j 1
for otherwise x would be indifferent to (0,0, ... , 0) and would

be blocked by Ij . But then yJ is strictly preferred to when

A, > 1, and the coalition S will block the allocation.

8



On the other hand if g(S,I(S)) < 1 for all S, then xi, ... ,
N

must be in the core. If notthere will exist an allocation I(S)= E yJ

with y i > xi for all j in S. Using our assumption as to the

J

continuity of preferences we see that X-> xJ for some X strictlyxi

larger than 1, and this demonstrates the theorem.

For any set S, g(S,z) can be viewed as a social utility function

of the set S for commodity bundles z, in which bundles are valued by

the coalition according to the value of the bundle in blocking the

underlying trade. Of course, the utilities are specifically dependent

1 N
upon the underlying allocation x 1 ... , x ; if the allocation were

different, the valuation of commodity bundles would be different. The

interpretation of z as a utility function will be somewhat more

convincing after the following result is demonstrated.

Lemma 1. For each S, g(S,z) is homokneous of degree one, and

concave.

The fact that g(S,tz) = tg(S,z) is immediate from the definition

of g. In order to demonstrate that g is concave we shall first show

that

g(Sz + T) > g(Sz) + g(S, )

where z and z are any commodity bundles. The theorem is obviously

correct if either g(S,z) or g(S, ) is zero. Let us therefore assume

that both X = g(S,z) and X = g(S,Z) are positive. Then we can find

a y=z a z , so that
E S JES



S> xi and > xj  for j in Sj

But then

z + z= (yi + Yi
JcS

and

Therefore g(S,z + 7) 2X 1 + X2 as *e wanted to show. The fact that

g(S,z) is concave follows by combining this result with the homogeneity

of z in the obvious way.

In the case in which S is the entire set of consumers, and in the

more general situation in which production is included, the function

g(S,z) was introduced by Debreu 15], with however, a slightly different

emphasis than that given here. Debreu defines the "coefficient of

resource allocation" to be

1
= g(x,I(x))"

1 N f N

If the allocation (xI, ... , x ) with = (X) is Pareto optimum then
1

p = 1. On the other hand if the allocation is not Pareto optimum then p will

be less than unity. More specifically if the resources pI(X), rather

than I(X) are used, an allocation can be found which provides the jth

consumer with a commodity bundle of equal utility value as x . In this

sense the quantity 1 - p is a measure of the economic loss associated
1 N)

with the allocation (x , ... , x.

10



In the analysis of the core, our attention will also be focused on

g(S,z) as a function of the set S. Let S be an arbitrary set of

consumers. The next result describes the relationship between g(s,z)

and g(S1,Z), ... ) g(S n z) with *** .. S. a partition of the set S.

Lemma 2. Let S be the union of dis~loint sets Sl).., ' Then

g(S'z) 1 Max Min(g(S1 ,z 
1) .. , g(Sn z n)).

1 + ... + =

For any z there will be commodity bundles y ijsuch that

E y ij z and y x

JES 1  g(Sjzi) for J~

Therefore if z+..+ Zn Z'then Z= nyij wt

il .JES~

y i

It follows that

g(S,z) > Min(g(S 1 ,z 1 ).., g(Sn z n))

Since this is correct for any z 1+ *1+ z n z, we see that

g(S'z) > Max Min(g(S 1,z
1) .. g(Sn-z n)).

z 1+ ... + zn = z

11



The corresponding inequality, running in the other direction, is

demonstrated as follows. By the definition of g(S,z) we may write

z = n yiJ with yi xj

i=l JSi 7if JESi

Define z i y, so that z + ... + z = z. It follows that

SJES
g(S ,zi) > g(S,z), and t1erefore

g(S,z) <Min(g(Sl,zl), ... , g(Sn,zn)) ,

1 nfor this particular decomposition of z into z , ... , z . This demon-

strates the lemma.

Before proceeding to an example let us derive two additional results

which depend on specific assumptions as to the structure of the market.

Let us consider two subsets of consumers, say A and B. The

number of consumers in each of these sets is assumed to be the same. In

addition we shall assume that for each consumer in A there is a counter-

part in B, and vice versa, with precisely the same tastes, and with

precisely the same commodity bundle in the allocation used to define g.

If these properties are fulfilled we shall call the sets A and B

isomorphic. Clearly if A and B are isomorphic then g(A,z) a g(B,z).

Lemma 3. Let S be a subset of the consumers, which is the union

of a disjoint collection of isomorphic subsets S,... , S . Then
g(Siz)

g(S'z) = _
n

12



If the functions g(Si,z) are denoted by g(z), then from the

result given above we have

g(S'z) = 1 Max n Min(g(zl), ... , g(zn))
Z + "'" + Z =Z

Since g(z) is concave, we have

)= gz + " + ) _ g(z > Min(g(zJ))
) (J=l

and therefore

g(S'z) <

The reverse inequality is trivially obtained by taking all of the zj

the same.

Lemma .. Let S = (1, 2, ... , n) be a subset of consumers, all

of whose members have identical preferences. Assume that the commodity

bundles underlying the definition of g, may be ranked x1< x2< _ , <Xn

according to the common preference ranking. Then if Sk = (1, 2, ... , k),

with k < n, wp have

g(Sz) < g(s z)

In order to demonstrate this result, we introduce an artificial

market consisting of nk consumers, all of whose preferences are

identical. The consumers in this market will be labeled (i,j) with

running 'rom 1 to n and with J from 1 to k. Lot g(A,z) be

13



defined for this market on the basis of the allocation which gives

the commodity bundle xi to the consumer labeled (ij). The entire

set of consumers T in this new market, consists of a k-fold repetition

of the original consumers in the set S. For this reason the previous

lemma may be applied to deduce that

'(T,z) = g(S,z)

On the other hand the set T may be decomposed into the disjoint

union of n sets TI, ... , Tn  as follows. Let

T= ((1,2) , (2,2) ,..., (k,2))

Tk = ((l,k) , (2,k) ,..., (k,k))

and

Tk+l = ((k+l,l) , (k+l,2), ... , (k+l,k))

= ((n,l) , (n,2) , ... , (n,k))

The first k of these sets are obviously isomorphic and the comnmon

value of *g(Tjz) for J=l, 2, ... , k will be identical with g(Sk Z).

Consider the set Tk+l , all of whose members have been allocated the
k+2. k+l xk 1I

same commodity bundle x . Since x > x > " > x I it follows

directly from the deftnition that g(Tk+lz) < -(Tj,z) for J=l, 2, ... k,

14



so that g(Tk+lz) < g(Skz). A similar argument may be applied to any

of the sets T for J=k+l, ... , n, and we therefore come to the

conclusion that

(T < g(Sk,Z) for j = 1, 2, n.

This remark permits us to make the appropriate evaluation of

'°(T,z). Applying lemma 2, we have

! g(S,z) -- (Tz)

1 Max Min(g(T1 ,zl * (Tn, )

z1+ ... + z z

< Max Min (g(Sz) , ... , k),zn))

1 n

z + ... + Z = z

< Max g(Skz1 )) ..+ + g(Skz n)Z + ... + Z = Zn

nn

g(Sk zl .. +gSkk+ n
z

< g(sk,W),

because of the concavity of the g functions. Using the fact that g

is homogeneous of degree one, the lemma is demonstrated.

This series of lemmas describes the formal properties of the g

functions which will be used in the discussion of the core for large

markets. Thesc properties are somewhat abstract and it may be useful to

illustrate them by means of an example.

Let us consider a market in which all of the consumers have identical

preferences given by a utility function U(x I , Xm) with the

following properties

15



1) U(x) is homogenecous of degree one.

2) U is concave, positive and increasing in each coordinate.

3) U ((I(X)) = 1 , where I(X) is the vector of total market

holdings.

Properties 2 and 3 are, of course, quite mild. On the other hand

assumption one is quite strong. It should be remarked that we are not

assuming that the initial holdings are also identical for the various

consumers. If that were correct the core would consist of the competi-

tive trade alone, that is no trade at all.

Our purpose is to construct the functions g(S,z) based on a
1 N

particular allocation x , ... , x of the total supply, and then to

determine the core by mans of Theorem 1.

Let us begin with the case in which S refers to a single consumer,

who receives the commodity bundle x as his share in the allocation

of the total market supply I. G((J),z) is, by definition, the largest

value of X such that U(.)> U(xj), or (using the homogeneity of the

utility functions) U(z) >U(xJ). It follows that

g((J ,z) _ U(z)
u(xj)•

Now let us consider an arbitrary set of consumers S. Applying

lemma 2 we see that

1U(zj)
g(Sz) = Max MinU

16



It is easy to see that

g(Sz) = U(z)
j~sU(xj)

For if we take

zi z U(xj)

s U(xj )
JES

we obtain

g(S,z) > Min U(z) U(z)-JESJS U(xj J) U(xj) '

and on the other hand

u ( U (z )Min ULz =Min U (-zJ ) < £

jES U(x- jEs \T(x') - S T) jU(x)

< U ( J U ( x j )  '

using convexity and homogeniety. Therefore

g(sz) < U(z)- JS U(xj)

and our statement is verified.

The simple form for the g functions in this example permits us

to describe the allocations in the core as being those allocations for

which

EU(x j ) > U(I(sl) P

JES

for all subsets of consumers S. If we assume a version of strict

concavity for the utility functions, appropriate to homogeneous functions,

17



then the description of the core takes an even simpler form. Specifi-

cally let us assume that

U (a= + (l-a)y) > aU(x) + (1-a) U(Y)

when 0 < a < 1 , and if y and x are not proportional. This, of

course, implies that

10 i > i u ( x i )

if all p, > 0 and if the x are not all proportional. In our case,1 N

if the allocation x , ... , x is in the core then we must have

NNu(x1) > u( E XI),
1

and therefore

N
£U(x)
N _U

Under the assumption of strict concavity this implies that all of the

allocations xi are proportional, and therefore proportional to I(X),

the vector of totai market supply.

The only allocations in the core arc therefore those allocations

xi = ai I(x), where aJ are non-negative numbers which sum to unity.

aJ may be thought of as the share of the jth consumer in the market.

The conditions given above for an allocation to be in the core may be

translated quite simply into conditions on the shares to each consumer.

We are to have

zU(x1) > U(I(sl).

jES

18



Since xi = J I(X), and U(I(X)) = 1 this is equivalent to

Saj > u(I(S))
JES

In other words, assuming that the utility of the total market supply is

taken to be unity, then the share of the market allocated to any set of

consumers must not be less that the utility of their combined initial

holdings. The similarity of this result, for the special market con-

sidered here, to the definition of the core in the case of transferable

utility should be clear. For this example, the shares of the market are

measures of utility and are transferable.

3. The Core for Large Markets

We are now prepared to turn our attention to the question of whether

the core tends to the collection of competitive allocations, as the size

of the market increases. As was mentioned in the introduction this

result, or versions of it, have been cited frequently in the economic

literature. If the statement however is examined with some degree of

care, it will be seen that its meaning is not at all clear. There are

several possiale interpretations that can be associated with this statement.

First of all, it is possible that one intends to measure in some absolute

sense (area, volume, etc.) the size of the set of allocations constituting

the core ur the contract surface, and to show that this measure of size

is small if the number of consumers in the market is large, eventually

tending to zero. This would probably be the most appropriate mathematical

restatement of the intuitive idea, if the measure of size were plausible

from an economic point of view. It seems, however, to be quite difficult

19



to produce such a measure; Edgeworth does not work with this technique,

nor do any of the subsequent writers on the subject.

As another possible mathematical statement of the problem we can

attempt to demonstrate that as additional participants are added to the

market, the core for the larger number of participants will actually be

a subset (that is, directly contained in) the core for the smaller num-

ber of participants. It takes very little thought, however, to realize

that this is a meaningless statement. If, ri we are assuming, there are

m commodities and n consumers, the core will consist of a subset of

points in mn dimensional space, and there is no immediate way to

compare such subsets on the basis of inclusion of sets for different

values of n.

There is a modification of this approach which consists of focusing

our attention on a particular collection of consumers, with their respec-

tive vectors of initial holdings I11 T n. We might then consider

all markets obtained by the addition of consumers with additional initial

holdings to this particular collection of consumers, and focus our
1 n

attention on those commodity bundles x , ... , x which will be part

of the larger core for all of these augmented markets. In this way we

are comparing the cores for various markets by means of the possible

allocations earmarked for a specific set of consumers. As we shall see

in a subsequent section as part of a more general result, such an allo-

cation x 1, ... , x will indeed turn out to be a competitive allocation

of the resources of this group of consumers. I find this type of approach

somewhat troubling, however, in as much as it forceis the members of this

particular group of consumers to become fully dependent upon their own

resources.

20



This type of approach could be used without considering all markets

containing the specific set of consumers. We might, for example arrange

the consumers in order, as consumer number one, number two, three, etc.,

and then designate by S the collection of the first n consumers.n

We would then compute the core for this market based on the total supply

held by the first n consumers and then examine the point set in mN

dimensions which describes those allocations in the core specifically

earmarked for some definite set of N consumers. The relevant questions

to be asked would be first of all whether this part of the core that we

are studying becomes smaller as S increases, and a question as to then

limiting set of points. The answer to the first question, however, is

definitely no. The parts of the cores that we are studying, even though

they are sets of points in a space of equal dimension, bear very little

relationship to each other for different values of n. For an individual

consumer, considered as a market by himself, the core will consist only

of his initial holdings. If however, this consumer forms part of a

larger market, it is most probable that none of the allocPtions in the

core for the larger market will assign to this consumer a commodity

bundle identical to his initial holdings.

All of the difficulties in inttrpretation suggested above are

forced upon us by the need to compare markets with increasingly larger

numbers of consumers, that i ,to compare fundamentally incommensurable

objects. As I see it, there are basically two ways out of these diffi-

culties. One is to permit the sequence of markets to increase in a

sufficiently regular way so that comparisons are possible, and the other

is to consider the ideal market with an infinite number of consumers.
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In the remainder of this section we shall examine the first approach

which J - very similar to that taken by Edgeworth.

Let us consider then a collection of a finite number of types of

consumers, type 1, type 2, ... , type N. All consumers of type J, if

we refer to several of them, will be assumed to have identical preferences

and identical vectors of initial holdings Ij. We shall then consider

markets consisting of n consumers of type one, n of type two, and

generally n consumers of every type. A typical consumer in this

market will be described by a pair of indices (i,j) where j indicates

the type of the consumer (j = 1, 2, ... , N) and i = 1, 2, ... , n.

In s .ch a market the allocations in the core may very well assign

different commodity bundles to consumers of the same type. For the

remainder of this section, however, we shall restrict our attention to

those allocations in the core which assign the same commodity bundle to

all consumers of the same type. There always will be such allocations

in the core since the competitive allocation has this proparty.

In order to discuss such an allocation we need only indicate the

commodity bundle x j assigned to a typical consumer of type j. Since

the commodity bundles in the core are meant to be an allocation of the

total market supply, it follows that

N N£ x1 = l
1 1

regardless of the value of n. All allocations in the core, which are

of the restricted type considered here, may therefore be described by

1 N
a set of N commodity vectors x , ... , x satisfying

N N 1

1 1
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The sets of such allocations in the core, which we shall denote by Cn,

does of course vary with n, the number of repetitions of each basic

type of consumer, as the following theorem demonstrates.

Theorem 2. Under the assumptions given above

Cn+l- C n •

The allocations that we are considering in the market with n

repetitions may be described as

type

repetition 1 2 ... N
1 2 N

1 x 1 x 2 ... xN

21 x2  ... N

X . .• X

1 2 N
n x x .. X

and that in the market with n + 1 repetitions by an additional line at

the bottom. The quantities g(S,I(S)), based on this allocation, will

be identical for the two markets if S is a set whose members are among

the first nN consumers. The theorem therefore follows immediately

from Theorem 1.

That part of the core consisting of those allocations which assign

identical commodities to identical consumers, will therefore become smaller

as the number of repetitions increases. The limiting set as n tends

to infinity wili consist of those allocations in the core for all finite n.

23



As we have seen, any competitte allocation will be in the core for all n.

The main result of this section will be that the only allocations of the

type described above, which are in the core for all n, will be

competitive allocations.

1 N N N
Let ,... , x with xj = Ij , suitably repeated, be in the

1 1

core for all finite n. If the functions g are based upon this

allocation, then we must have

g(SI(S)) < 1

where S is aly set consisting of k consumers of type one, k2  con-

sumers of type two, and generally k consumers of type J with

j = 1, 2, ... , N. Let S be partitioned into subsets Sl, ... , SN'

with S consisting of the k consumers of type J. Then since

M(SI(S) max Min (g(SjzJ))(SIS) N zg(Si

iz =I(S) J

we have

Max Min(g(S ,zJ)) < 1

N =I(S) j
1

But S consists of k isomorphic consumers (see the discussion

immediately preceding lemma 3), so that

g(S ,z j ) = g((j), k-

with (j) referring to a typical consumer of type J. We also have

N
I(s) = k I

Jjl
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so that

Max Min (gj())< i
N j=N \ J
1 1k

(In this equation and in the remainder of this section we shall employ

the more compact notation g., for the g function based on a typical

consumer of type J.) If we replace zj by k ti, we obtain

N Max Min (g (tJ)) < 1
E kj (tJIiJ)--ON

1

This inequality is to hold for any set of integers (kl, k2 ) ... , k N)"
N

The constraining equality lk (ti-I J) = 0, may of course be written as

N (tJl j-) = 0

N k
where k = E k, and this suggests that the ratios k may be replaced

by any set of positive numbers pj; in other words that

Max Min (g (tJ))
Ei oj(tJ-lJ)= 0

shall be less than or equal to one, whenever pj > 0. This latter

inequality, which shall be very important for us, is indeed correct.

In order to see this let l' "' , PN be positive numbers, and

let M be an integer eventually tending to infinity. We define

k 1 + [MP], where [M04 ] is the symbol for the greatest integer

less than or equal to M. T hen 1> p , and as M -c, k
J* M -j' J

Now let t, . . , tN be any collection of N commodity bundlesN

satisfying 0 O (tj-ij) = 0. We wish to show that Min gj(t j) < 1.
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First of all let us notice that

t= .L tJ + ( "L) k j
k. k

N
satisfies the equation E k(i(t -I J ) = 0. It therefore follows from our

1
previous result that

Mi j J tj + (1- <-
j k pil.

However since each gj is concave this implies tiat

Minm k g(t j) + (1- fJ ) g (IJ) <1

j \kj j

Now let M tend to -, and we obtain

Mi (g (tJ)) 1

for any commodity bundles satisfying _ j(tJ-I j) =

One more point is in order before we suarize this part of the

discussion. If all of the numbers Pl, 9)N are the same, our

inequality becomes

Max Min (g (tJ)) < 1.

N j=N l
E t E1 I
1 1

It ia a simple matter to see, however, that the left hand side must

actually be equal to one. For if we let S represent a set of consumers

consisting of precisely one of each type, then the left hand side is the

same as
N

g(S, I 1i)
1
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Since x = I and of course x > x, we may conclude directly

from the definition of the g function that

g(S, 
) > 1I

and combining this with the previous inequality we obtain

N Max Min(g (tJ)) = i
E P (tJ-lJ)=o 

J

1

when all of the p are the same.

Before continuing with the argument, let us summarize these results

in the following theorem.

1 N N N
Theorem 3. If x , ... , x with x = I j is in the core

1 1

for every finite n, then

Max Min(g (tJ)) < 1

E pj(tJ-ij)=O J
1

and is actually equal to 1, when all of the pj are the same.

Let us now turn to the argument which will show us that x , ... , x

is actually a competitive allocation.

Our first step is to determine the set of prices ll ... I m

which will eventually turn out to be the competitive prices for the
1 N

allocation x , ... , x . We consider a convex set T, defined to be

the set of all commodity bundles t = t with Min g (t >1.

N 1

Theorem 3 tells us that I is not in T, and we may therefore use

the separating hyperplane theorem to obtain constants ll "'" , im

N
(not all zero) such that (v,t) > (v, IJ), for all t in T. Since

1

the coordinates of t may be selected as being arbitrarily large, we see
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that all vj > 0, and since the vj are not all zero, we may normalize
m

the prices so that £j = 1. There may, of course, be more than one

such separating hyperplane, and we shall denote by -T the convex set
N

of all hyperplanes which separate T from E I , normalized by the
m 1

condition A i = 1.
i N

If t is any commodity bundle such that t - t with

Min g (tj) > 1, then (1 + e)t is in T, and we may therefore conclude
j- N

that (v,t) > (A, E I ) .

1
It is a simple matter to see that x will actually maximize the

preferences of the jth consumer at the price's v. For if tj is a

commodity bundle with tj > xi and (v,tj) < (n,xJ), then by thej

hypothesis of continuity of the preferences, there will be a comnodity

bundle V with TJ > xj and (,Tj) < (n,xJ), unless (n,x j ) = 0.

But then t x + t , will satisfy

NOt jt > O ,
1

or

(7,xk) + ( ) > N (,x k )

Si k 1

which is a contradiction, unless (n,xj) = 0. As we shall see later,

this exceptional case cannot occur.

In order to: finish the proof that the xi represent a competitive

allocation, we need only show tha4

(1,xj ) < (,,Ij
)
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in other words that each consumer spends no more than the value of his

initial holdings at the stated set of prices. This collection of N

inequalities will not be valid for all prices iV ' im in the

convex set 1- it will however be valid for at least one such set of

prices, and this is sufficient for our purpose.

The proof of this result will proceed in a somewhat indirect fashion.

We shall, first of all, demonstrate that for every collection of non-

negative numbers 51, 52, ... , 5NN there *ill be at least one set of

prices v in TI such that (A, 8 (Ij - xJ)) > 0. To see this,
5

let us appeal to Theorem 3, with pj = 1 - . M will be a positive

number, eventually tending to infinity. For every value of M, however,

we have

Mi gj(t j ) < 1

i

N N
for all t, t with Pt = Let us define the convex

set T to be the collection of all t, such that

N
t P p

with

Min g (tj ) > Max Min gj(z j )

J E pj(zi-lj)=O J

N
obviously ojl is not in this convex set, and we may therefore find

ii

prices vi(p), I M(P such that

N
(I(P),t) > (1T(P),I) , for all t in T
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Again these prices will be non-negative and may be normalized so that

their sum is one. Moreover, we may also conclude that
N 

J(11(p),t) >l j (t(0)',Ij

for any t = N tj with

Min gj(t j) > Max Min gj(z j )

On the other hand, let t be any element of the set T previously
N

defined, so that t =T tJ  with Min g (tJ) > 1. It follows that
N1 j

t = PjI with (r) g (ta)
Min g-Min 1> ,

since the numbers pj are less than or equal to one. In other words

if t is in T, it will certainly be in T and we will have

N(V(p),t) > pj (11(p),l )

Now let M -. , so that the numbers p tend to one. Since the

n(p) are all in some compact set it follows that there will be a limit

point for the n(p)'s, say v, and that

N
(Vt) > (A'IJ) , for any t in T.

In other words any limit point for the v(p)'s will be a set of prices

in 17, the set of separating hyperplanes for T.

We wish to show that N

bj (V,i- ) > 0
1
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N

for any such v that appears as a limit of the n(p). Consider £ px j .

Since

Min g(xj) = i > Max Min g (tj )
-N P (tJ-lj)=O j

1

we see immediately that

N NPij (A(P1, x ) >EJ (-A(P1, I )

or

But since l (I - xj) = 0, we have l8 (n(p), I j - x) > 0. If we

let p tend to one, thereby obtaining a set of prices in 7, we see

that
N 

JI - x) > 0

With this result in mind, it is quite simple to show that there

will be at least one set of prices v in 7, such that (v,Ii- xj) > 0

for all j, and this will demonstate that xi is indeed a competitive

allocation. We shall use the following simple lemma.

Lemma 5. Let A be a closed convex cone in m-dimensional space

and 7T a closed, bounded convex set, also in m-dimensional space.

Assume that for every point a in A , there exists at least one n

in 77 with (v,a) > 0. Then there will be a v in -M such that

(r,a) > 0 for all a in A.

Assume that the conclusion of the theorem is not correct. Then if

A represents the dual cone to A, that is the set of t such that
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(t,a) > 0 for all a in A, -'e see that A+  and IT will necessarily

be disjoint. Since the two sets are disjoint and closed, and one is

bounded, it follows that we may find Cl, ... , cm, not all zero and

b > d, with

(t,c) > b for all t in A 4 ,

and (%,c) < d for all v in T-. Since A+ is a cone, containing

the origin, it follows that b < 0 , and therefore d < 0. But on the

other hand we must have (t,c) > 0 for all t in A+. For if there
+ 4

were a tO in A with (toc) < 0, then since A+ is a core, Xt0

would also be in A+ , and by taking X sufficiently large we would not

have (t,c) > b for all t in A+ . Since (t,c) > 0 for all t in A+ ,

c must be in A. We have therefore constructed a point c in A, such

that (A,c) < 0 for all A in T, and this contradicts the assumptions

of the lemma.

In the application of the lemma to our problem, we define A to
N

be the convex cone consisting of all points of the form ZE%(I j- xJ),1

with 6j 0 0, and - the set of separating hyperplanes defined before.

It follows from lemma 5, that there is at least one it in -T such

that N

for all 8 0 , and this certainly implies that (v,Ij - xj ) > 0 for

all J. This completes the proof that the allocation x , ... , x Nis

a competitive equilibrium. We may also clear up the technical point of

the last argument as to whether (A,xj) = 0. From what we have just

done we have (n,xj) = (r,IJ); and if we assume that all of the components

of Ii are strictly positive, it follows that (v,xJ ) > 0.
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It is perhaps worthwhile to point out the role played in the above

argument by the increasing number of consumers in the market. The

existence of prices v such that the commodity bundles xj maximize

preferences at these prices is correct even for markets of finite size

and depends merely on the observation that an allocation in the core is

certainly Pareto optimal. It then follows from theorems of Arrow and

Debreu [1,6] which state that any Pareto optimum allocation of social

resources may be achieved by means of fixed prices. The important point,

however, is that, in general, redistribution of income is necessary prior to

maximazation at the fixed set of prices. In other words it will gener-

ally not be true that
j-AXi Ij) <0,

fbr an arbitrary Pareto optimum allocation xj . In fact, the initial

holdings of the various consumers, as distinct from the total market

supply, never enter the discussion of Pareto optimality at all. It is

only by means of conceptssuch as the contract surface or the core that

the holdings of individual consumers and groups of consumers become

relevant.

On the other hand if we do not let the number of consumers become

infinite, the core will generally contain allocations other than competi-

tive ones. In a technical sense the passage to the limit is similar to

a process of differentiation. It is only by means of the device of an

infinite number of consumers that we were able to show that the Pareto

optimum prices (or more specifically at least one set of Pareto optimum

prices) , would in addition satisfy the inequalities

(,xi - Ij ) < 0 .
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Let us summarize the main result of this section as follows.

Theorem 4. Consider a market with a finite number of types of

consumers, all consumers of the same type having identical tastes and

initial holdings. Let there be an infinite number of consumers of each

type. Consider an allocation x 1 xN with N I_ such
,... , x with x j  F , sc

1 1
that every consumer of type J receives the commodity bundle x j . If

this allocation cannot be improved upon by any finite collection of

consumers, on the basis of their own initial holdings, then it is a

competitive equilibrium.

4. The Case of Different Allocations For Consumers of the Same Type.

The result of the previous section can be understood in two possible

ways. One interpretation is that we are considering a sequence of markets

composed of consumers of the same types, and such that the numbers of

repetitions of each basic type are increasing in a regular fashion. An

alternative interpretation, which was stressed in a statement of Theorem 4,

is that the market consists of an infinite number of consumers, and that

no passage to the limit is required. Mathematically the two interpre-

tations are identical since we considered only those allocations which

assign the same commodity bundle to consumers of the same type.. In the

present section we would like to consider the somewhat more general case

in which different commodity bundles may be assigned to consumers of the

same type, and it will be more convenient for us to favor the second

interpretation.

We shall assume, as before, that the market consists of a finite

number of types of consumer, but now with an infinite number of each type.
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The commodity bundle assigned to the Ith consumer of type j will be

denoted by xi . Our purpose will be to show that if allocations of this

sort are in the core, then of necessity all consumers of the same type

receive the same commodity bundle, and that the assignment is a competi-

tive equilibrium.

The concept of the core requires that we consider allocations of

the total market supply, which is of course infinite, if we adopt the

interpretation of an infinite number of consumers. The condition that

we shall impose on the allocations to be considered in this section is that

n I  Nx i j -N

( j=l J-1

It should be clear that a condition of this sort is necessary, rather

than the weaker type of condition that

n N

E ExiJnm i~l J-1lJ
limn n

n -+wJ=l

For if only the latter condition were to be assumed, no allocation

ould even be Pareto optimal; an improvement could always be found merely

by increasing the value of the bundle assigned to a specific consumer,

while leaving the remaining consumers unchanged.

In order tc obtain the result that all consumers of the same type

receive the same commodity bundle, I have found it necessary to impose

two additional requirements on the preferences of the various consumers.

1. A version of strict convexity to the effect that if x > y and

x and y are different commodity bundles, then Qx + (1-a) y > y if

O <at < 1.



2. A condition which essentially says that the indifference surfaces

of the various consumers do not pass through the coordinate planes. More

specifically we assume that any commodity bundle which contains a zero

level for any commodity will be indifferent to the commodity bundle

(0, ... , 0). This is an excessively strong assumption which it would

be desirable to eliminate.

The argument of this section will again be based on a collection of

functions g1 (z), but they will of necessity be different from the

functions of the previous section. Consider sets S consisting of n

individuals of type J, and the associated g functions g(S,z). As

S varies these functions will, for any fixed z, be bounded from above

since xi j will certainly be preferred to Ii. Let

gn(z) = sup g(S,z)

as S varies over all sets of n Individuals of type J. It is a simple matter

to show, bymeans of lemma 4, that ngj(z) is decreasing in n, and

will therefore approach a limit as n -aa. We define g (z) lr ngn(z).

As we see from the following theorem, these functions will play

a role somewhat simi.lar to the gj functions of the previous section.

Theorem 5. Let xi j be in the core and satisfy

n N Nlim Z C x - n E Ij 0

n -+c i=l J=l J=l

Then

Max Min gj(t j ) =1
N j 1
NE (t -I.)=O J
1
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There is one difference between this theorem and theorem 3. That

is, the present theorem refers only to the case where all Pj = 1. There

is a corresponding result for the pj's different from each other, but

since we shall not use it in this section, it has been left out of the

statement of theorem 5.

The proof of theorem 5 is quite direct. We shall first demonstrate

that if

N tj = lI' then Min g (tj) < i

We know from theorem 1, that if S consists of n consumers of type

J, then

Min g(Si, ntj) < 1,

and therefore

Min ng (t J) < 1
i i

Letting n tend to infinity we obtain the desired inequality.

Now let us turn our attention to the inequality

Max Min gj (t j ) >
E t j = E Ii i

Since lim i  - I = 0 it follows that
m-tm i=l J=l J=l

n N N
E E xj<(14)nE
i=l j=l J-1

for each commodity, when n is sufficiently large. (We are using the

assumption that there is a positive supply of every commodity.)
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If S denotes the set consisting of the first n consumers of -ach

type it follows that
N

g(SP N 1i)> 1

and therefore

Max Min -t) > 1

E tj = !I

with S the set of the first n consumers of type J. Let tJ(n)

maximize, so that

Min ngn (TJ(n)) >
i i - 1+e

Now let V be a limit point of EJ(n). Let us assume for the moment

that V has no components equal to zero. Then we may find a sequence

of n's, tending to infinity such that VJ(n) < (l+e) TJ for all j

and for each commodity in the vector. For such n's we have

Min ng (FJ) >
J ngj - (l+E)2

And letting n tend to infinity we obtain

Min g(t)> 1

If we then let e tend to zero (Tj does not depend on e), the

conclusion of theorem 5 is obtained.

We have only to clear up the point that all of the components of

Tj are different from zero. If this were not the case then we would

have V equivalent to (0, ... , 0), and by the assumption of

continuity it would follow that

atj(n) < Ij

3



for any specific a, for a sequence of n's tending to infinity. But

if n is large

ngS, VJ(n))>1ngSj- 1

and therefore we may write

n i

ntJ(n) = yi

with

i ij
(1+E) Y > xi > .

It follows from the convexity of the preferences that

(1+E) TJ(n) >

which is contradiction if a > (1+E). This concludes the proof of

theorem 5.

The specific values of TJ obtained in the proof of this theorem

will be of some importance for us. In fact we will show that TJ = xiJ

for all i and j. First of all let us remark that since Min (gj (J)) = 1,

we have ng (J) > 1 for all n and J. We wish to show that, in fact,

ngn(:j) = 1 for all n and J. Suppose that g (VJ) > 1. Then there

will be an 0 < a < 1 such that g (otV) > 1. Let us define z= ETk+ 9 J.

It follows that we may find a set S, consisting of precisely one

consumcr of each type, for which

g(S,z) > 1- E
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But

N i = z + (1-a) Ej
j=l

and therefore

g(s, N J ) > g(sz) + (1-a) g(s,E J )
1

> 1-C + (1-a) g(S,'t J)

However, since VJ has no components equal to zero, we may find a X > 0
N

such that t 3 > X I for all components. This implies that

g(StV) > xg(S, IJ ), and combining this inequality with the previous
1

one we obtain

N(1-% (1-a)) g(S, I I ) > i-E

1

If we take E sufficiently small this would provide us with a set SN

consisting of n consumers of each type for which g(S, DI) > 1,
1

which violates the condition that x be in the core. We have therefore

verified that g1 (ta) = 1 for all J.

It is an immediate consequence of this fact that TJ < x'j for

I" i and J. But it is then an easy matter to finish the analysis of

this section and show that TJ = xij for all i and J. We shall

-l--Ndemonstrate, first of all, that ti, ... , t represents a Pareto optimum
N

allocation of the commodity bundle E IJ  in a market consisting of a
J=l

single consumer of each type. For suppose that this were not the case.

If the assumptions of continuity and monotonicity are used, it can be

shown that there is a small positive E, and an allocation of the market
N N

supply Z = Ij, such that
J=l J=l > TJ
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Then since g (?J) = 1, it follows that for our e, there is

a consumer of type J (with commodity bundle x such that ic >

9, ij 1-e
and therefore y > xi * This would provide us with a finite coalition

which blocks the underlying allocation, and therefore t , ... , t is

Pareto optimal.

But it is then an immediate consequence of the theorems of Arrow

and Debreu that there exists a set of prices np ... , om such that

TJ minimizes (n,x) for all x > V1 . Recall that we have already

demonstrated that < x . B our hypothesis of strict convexity it

follows that (nti) <J(n,xiJ), with strict inequality if a single tJ

is different from xii. But we have assumed that

n N i 4  Nlira E xi - n Z Ij :
n - i=l J=l J=1

and therefore

n N N
lim, Z (A,xii) - n (n, 1 ) 0

n -. = i=l J=l J=1

N N

since T J =Z Ij . If tj is not identical with xi j for all i
j=l J=1

and J we would have a contradiction. This implies that all of the

commodity bundles assigned to a consumer of a particular type are

identical, and we may then return to the argument of the previous section

to show that they represent a competitive allocation.
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